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conjectured to be given by a Gaussian matrix model, the action of the brane correctly re-
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As in the corresponding string solution, here too we find two classical solutions, one stable

and one not. The unstable one contributes exponentially small corrections that agree with

the matrix model calculation.
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1. Introduction

In the AdS/CFT correspondence [1] Wilson loops are usually described by macroscopic

fundamental strings that end along the loop at the holographic boundary of the space [2, 3].

This realizes the string picture of gauge theories, albeit in a conformal, not confining setting.

In string theory some objects can metamorphose into others and it was indeed realized in [4]

that a multiply wrapped Wilson loop (or a loop in a high-dimensional representation) is

better described by a D-brane rather than by a large number of coincident strings.1

Initially a D3-brane configuration was found and later also a D5-brane configuration.

In both cases they corresponded to a 1/2 BPS Wilson loop, either a straight line or a circle.

The D3-brane describes the Wilson loop in the symmetric representation (which, in the

strong coupling regime, seems to be dominated by the single-trace multiply wrapped loop)

whereas the D5-brane gives the loop in the antisymmetric representation [5 – 10].

Since the initial description of the half-BPS loop in terms of D3-branes, such solutions

were not found in any other system. It turned out to be simpler to find D5-brane solutions,

and some non-supersymmetric examples were studied [5, 11, 12].

In this paper we find some systems where it is possible to find solutions for the D3-

branes starting from first-order equations derived from the supersymmetry conditions. All

the examples we present are Wilson loop operators which preserve 1/4 of the supersymme-

try generators. First we consider the system of a straight 1/2 BPS Wilson loop with the

1Already in [2] D3-branes were proposed as a possible holographic description of Wilson loops.
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insertion of two 1/2 BPS local operators such that the combined system preserves 1/4 of

the supercharges. If there was only the Wilson loop, the D3-brane would have been the one

of [4], while if only the local operators were present, that would have involved the original

giant gravitons [13 – 15].

This combined system of a Wilson loop and a local operator was presented in [16],

where it was shown to be supersymmetric and the relevant string solution was found.

In section 2 we present the D3-brane solution preserving the same supersymmetries, and

interpolating between the “giant Wilson loop” of [4] near the boundary and a giant graviton

in the center of AdS5.

The second system, which will be described in section 3 involves circular Wilson loops

which couple to three of the N = 4 scalars. This system, first presented in [17] (as a

generalization of an example in [18]) and studied further in [19], also preserves 1/4 of

the supersymmetries, but with a different combination of generators than in the previous

example. At two loop order in the perturbative expansion the interacting graphs (in the

Feynman gauge) cancel, which led to the conjecture that only ladder/rainbow diagrams

contribute to these operators. All those diagrams combine nicely into a matrix model

which was then compared with the string calculation in AdS5 × S5. As we shall review in

section 3 below, the results agreed including a subleading term, a world-sheet instanton,

which matched a correction to the asymptotic expansion of the matrix model at strong

coupling.

The calculation using D3-branes is applicable for a Wilson loop in a symmetric repre-

sentation whose rank k is of order N . At large λ the analog observable in the matrix model

agrees with the single-trace multiply wrapped loop which is given by a function of the ratio

k/N and thus the D3-brane calculation captures non-planar corrections to the usual string

calculation. We are able to compare the matrix model and the D-brane calculation for

arbitrary k/N and find an agreement and a check of the aforementioned conjecture to all

orders in 1/N .

The two systems presented in sections 2 and 3 are quite different. We combined them

in the same paper since they both preserve eight supercharges, and some of the technical

details of the calculations are similar. Also, the system in section 2 serves as a good warm-

up exercise to the more interesting system in section 3. Because of the differences between

the two systems, more details on the two setups will be given in each of those sections.

2. Wilson loop with insertions

2.1 Setup

We consider here a Wilson loop operator in N = 4 supersymmetric Yang-Mills theory on

S3 × R, where the line is the time direction with Lorentzian signature. The loop will be

comprised of one line in the time direction along a point on S3, and another line going in

the opposite direction at the antipodal point. In addition we will include the insertion of

local operators at the infinite past and infinite future.

Under the exponential map (after Wick-rotation), the space is mapped to flat R
4 and

the two lines to a single line through the origin with the local insertions at the origin and
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at infinity. Without the insertions this Wilson loop preserves half the supersymmetries

of the vacuum, and we will consider the local insertions to also be half-BPS, ZJ , where

Z = Φ1 + iΦ2 is a complex scalar field (if ZJ is at the origin the charge has to be absorbed

by Z̄J at infinity). Note that the insertions are not gauge invariant, since they are not

traced over, and transform in the adjoint representation of the gauge group. The entire

configuration is nonetheless gauge invariant, because of the presence of the Wilson loop.

This guarantees that in the string picture the charge generated by the local operator is

carried by the open string (or D-brane) representing the Wilson loop, and not by another

supergravity field.

Recall that the half-BPS Wilson loop contains also a coupling to one of the scalars.

For the combined system to be 1/4 BPS, this scalar has to be orthogonal to Z and Z̄, so

we take it to be Φ3. Formally we can write the Wilson loop as

WZJ = TrP
[

ZJ(−∞)ei
R

∞

−∞
(At(t,0)+Φ3(t,0))dtZ̄J(∞)ei

R

−∞

∞
(At(t,π)+Φ3(t,π))dt

]

. (2.1)

The arguments of At and Φ3 are the time and the two points on S3 given by an angle at

0 and π.

2.2 String solution

This Wilson loop was studied in [16] as were some non-supersymmetric generalizations of

it and they were related to a certain spin-chain system. There it was proven that (2.1),

which was the pseudo-vacuum of the spin-chain system, is supersymmetric. Also the string

solution describing it at large J and large ’t Hooft coupling λ was given. We review it here.

Take the following metric for AdS5 × S2 (the other directions on S5 do not play any

role and we do not write them explicitly)

ds2

L2
= − cosh2 ρ dt2+dρ2+sinh2 ρ

(

dχ2 + sin2 χ(dϑ2 + sin2 ϑ dϕ2)
)

+dθ2+sin2 θdφ2 . (2.2)

L is the radius of curvature related to the ’t Hooft coupling and the string tension by

L4 = λα′2. The Wilson loop should reach the boundary at χ = 0 and χ = π. At those

points it should approach θ = 0 on the S2, which is the direction corresponding to Φ3.

In the bulk the string should rotate around this sphere carrying the angular momentum

related to ZJ .

The solution to the string equations of motion which satisfies these conditions is

φ = t , sin θ =
1

cosh ρ
. (2.3)

There are two parts to the string: at χ = 0 and at χ = π. They are continuously connected

to each other beyond ρ = 0. For a full derivation of the solution see [16].

Some interesting issues arise when studying the analog system in Euclidean signature.

Those were discussed in [20].
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2.2.1 Supersymmetry analysis

A precise counting of the supersymmetries preserved by the string solution (2.3) was per-

formed in [16]. Here we briefly review that computation.

The number of supersymmetries preserved by the string is equal to the number of

independent solutions to the equation Γε = ε. The κ-symmetry projector Γ is given by

Γ =
1√− det g

∂tx
µ∂ρx

νγµγνK , (2.4)

where g is the induced metric on the world-sheet parameterized by t and ρ, K acts by

complex conjugation, and γµ = ea
µΓa with Γa constant tangent space gamma-matrices.

The dependence of the Killing spinors ε on the relevant coordinates of the metric (2.2) is

ε = e−
i

2
ρ Γ?Γ1e−

i

2
t Γ?Γ0e−

i

2
θ Γ?Γ5e

1
2
φ Γ56ε0 , (2.5)

where Γ? = Γ0Γ1Γ2Γ3Γ4 is the product of all gamma-matrices in the AdS5 directions and

ε0 is any constant chiral complex 16-component spinor. The spinors ε solve the Killing

equation
(

∂µ +
1

4
ωab

µ Γab +
i

2L
Γ?γµ

)

ε = 0 . (2.6)

Inserting the solution (2.3) into the expression (2.4) it is easy to see that Γ does not

depend on t. The only place where t appears is in the exponent of the Killing spinors.

Since the projection equation has to hold for all t and ρ we eliminate this dependence by

imposing the condition

Γ?Γ056ε0 = iε0 , (2.7)

so that the Killing spinors become

ε = e−
i

2
ρ Γ?Γ1e−

i

2
θ Γ?Γ5ε0 . (2.8)

After some manipulation the action of the projector can be written as

Γε = −e−
i

2
ρ Γ?Γ1e−

i

2
θ Γ?Γ5 Γ01Kε0 , (2.9)

so the projector equation is solved by all constant spinors satisfying

Γ01Kε0 = −ε0 . (2.10)

It is easy to verify that the two conditions (2.7) and (2.10) are consistent with each-other,

so there are eight linearly independent real solutions to this equation. Thus the string

solution preserves 1/4 of the supersymmetries.

2.3 D3-brane solution

We look now for the D3-brane solution associated to this Wilson loops with insertions.

The loop is in the time direction, as reviewed above, and preserves an SO(3) × SO(3)

symmetry, the first being part of the AdS5 isometry and the other coming from the S5.
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It is convenient to use the metric (2.2) and fix a static gauge where t, ρ, ϑ and ϕ are the

world-volume coordinates on the D3-brane. The ansatz is then

χ = χ(ρ) , θ = θ(ρ) , φ = t . (2.11)

The brane action consists of a Dirac-Born-Infeld (DBI) part and of a Wess-Zumino

(WZ) term, which captures the coupling to the background RR form

S = TD3

∫

e−Φ
√

− det(g + 2πα′F ) − TD3

∫

P [C4] , (2.12)

where TD3 = N
2π2L4 is the brane tension and P [C4] denotes the pullback of the 4-form to

the brane world-volume. The solution should include a non-zero electric field, carrying k

units of flux associated to the Wilson loop. Because of the symmetry of the system, it will

be in the direction Ftρ(ρ).

With the ansatz above the DBI action reads (in the following we absorb a factor of

2πα′/L2 in the definition of Ftρ)

SDBI =
2N

π

∫

dt dρ sinh2 ρ sin2 χ
√

(cosh2 ρ − sin2 θ)(1 + sinh2 ρχ′2 + θ′2) − F 2
tρ ,

(2.13)

whereas the WZ term is given by

SWZ =
2N

π

∫

dt dρ sinh4 ρ sin2 χχ′ , (2.14)

and the relative sign between these two terms in the action is positive. In these formulas

the ′ denotes a derivative with respect to ρ.

It is rather complicated to solve the equations of motion coming from this action.

Instead of trying to do this, we write down the supersymmetry equations derived from

requiring κ-symmetry. These are first-order rather than second-order and can be integrated

easily.

The κ-symmetry projector associated with the D3-brane embedding is (see for exam-

ple [21])

Γ = L−1
DBI

(

Γ(4) + L2FtρΓ(2)K
)

I , (2.15)

where K acts by complex conjugation, I by multiplication by −i, and

Γ(4) = ∂tx
µ∂ρx

ν∂ϑxξ∂ϕxζγµγνγξγζ = (γt + γφ)(γρ + χ′ γχ + θ′ γθ)γϑγϕ ,

Γ(2) = ∂ϑxµ∂ϕxνγµγν = γϑγϕ ,
(2.16)

with γµ = ea
µΓa. Using the vielbeins

e0 = L cosh ρ dt , e1 = Ldρ , e2 = L sinh ρ dχ ,

e3 = L sinh ρ sin χdϑ , e4 = L sinh ρ sin χ sin ϑ dϕ ,

e5 = Ldθ , e6 = L sin θ dφ ,

(2.17)
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and the ansatz (2.11), the projectors Γ(4) and Γ(2) can be explicitly written as

Γ(4) = L2(cosh ρΓ0 + sin θΓ6)(Γ1 + sinh ρχ′ Γ2 + θ′ Γ5) Γ(2) ,

Γ(2) = L2 sinh2 ρ sin2 χ sin ϑ Γ34 .
(2.18)

Adding the dependence on the other coordinates into (2.5), the Killing spinors for the

metric (2.2) are

ε = e−
i

2
ρ Γ?Γ1e−

i

2
t Γ?Γ0e

1
2
χΓ12e

1
2
ϑ Γ23e

1
2
ϕ Γ34e−

i

2
θ Γ?Γ5e

1
2
φ Γ56ε0 . (2.19)

From the supersymmetry analysis in the string case, we know that the constant spinors

ε0 satisfy the conditions (2.7) and (2.10)

Kε0 = −Γ01ε0 , Γ6ε0 = −iΓ12345ε0 . (2.20)

Plugging φ = t in the expression (2.19) and using the second constraint in the equation

above, the Killing spinors may be rewritten as

ε = e−
i

2
ρ Γ?Γ1e−

i

2
θ Γ?Γ5e

1
2
χΓ12Mε0 , (2.21)

where

M = e
1
2
ϑ Γ23e

1
2
ϕ Γ34 . (2.22)

The differential equations we are looking for will come from considering the projector

equation

Γε = ε . (2.23)

To simplify it, we move the matrix e−
i

2
ρ Γ?Γ1e−

i

2
θ Γ?Γ5e

1
2
χΓ12 to the left of the projector Γ,

using some gamma-matrix algebra and applying the constraints (2.20) (note that ε0 and

Mε0 satisfy the same constraints). In this way we get a set of 8 differential equations in θ,

χ and Ftρ (on the left we indicate the gamma-matrix structure the equations come from)

Γ0345 : 0 = Ftρ sinh ρ cos χ sin θ − θ′(cosh2 ρ − sin2 θ)

Γ?Γ5 : 0 = Ftρ sinh ρ sin χ sin θ − χ′ sinh2 ρ sin θ cos θ

Γ0234 : 0 = (cosh2 ρ − sin2 θ) sin χ + χ′ cosh ρ sinh ρ cos χ cos2 θ

Γ12 : 0 = Ftρ sinh ρ cos χ cos θ + θ′ sin θ cos θ + cosh ρ sinh ρ

Γ15 : 0 = χ′ cosh ρ sinh ρ cos χ sin θ cos θ − θ′ cosh ρ sinh ρ sin χ + sin χ sin θ cos θ

Γ25 : 0 = Ftρ cosh ρ sin θ + cos χ sin θ cos θ − χ′ cosh ρ sinh ρ sin χ sin θ cos θ

−θ′ cosh ρ sinh ρ cos χ

Γ0134 : 0 = Ftρ cosh ρ cos θ + (cosh2 ρ − sin2 θ) cos χ − χ′ cosh ρ sinh ρ sin χ cos2 θ

1 : 1 = −L4L−1
DBI sinh2 ρ sin2 χ sin ϑ

(

Ftρ sinh ρ sin χ cos θ + χ′ sinh2 ρ sin2 θ
)

(2.24)

One can solve for θ′, χ′ and Ftρ using for instance the first three equations. Once these are

solved, the remaining five are automatically satisfied. The first three equations give

θ′ = − tan θ tanh ρ ,

χ′ cot χ = − cosh2 ρ − sin2 θ

cosh ρ sinh ρ cos2 θ
,

Ftρ = − cosh2 ρ − sin2 θ

cosh ρ cos θ cos χ
.

(2.25)
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The solution to the first equation is

sin θ =
C1

cosh ρ
. (2.26)

The integration constant C1 is related (in a complicated way) to the amount of angular

momentum carried by the brane. After plugging the solution for θ into the expressions for

χ′ and Ftρ, we find

χ′ cot χ = − cosh4 ρ − C2
1

sinh ρ cosh ρ(cosh2 ρ − C2
1 )

, (2.27)

which is solved by

sinχ = C2
coth ρ

√

cosh2 ρ − C2
1

, (2.28)

with C2 a second integration constant. Finally the electric field is

Ftρ = − cosh4 ρ − C2
1

cosh2 ρ
√

cosh2 ρ − C2
1 − C2

2 coth2 ρ
. (2.29)

Plugging the BPS equations (2.25) into the DBI action (2.13), the square root simplifies

to
√

(cosh2 ρ − sin2 θ)(1 + sinh2 ρχ′2 + θ′2) − F 2
tρ = (cosh2 ρ − sin2 θ)

tanh ρ tan χ

cos2 θ
. (2.30)

It is then straightforward to check that the solutions (2.26), (2.28) and (2.29) satisfy the

brane equations of motion stemming from (2.13) and (2.14).

2.3.1 Conserved charges

The solution has two integration constants C1 and C2 which are related to the two conserved

charges carried by the brane: the rank of the symmetric representation (or the number of

windings of the Wilson loop) k, and the angular momentum J around the S2 in the S5.

The first charge k is the conjugate momentum to the gauge field after integrating over

ϑ and ϕ

k = Π =
2πα′

L2
TD3

∫

dϑ dϕ
δL

δFtρ
=

4N√
λ

C2 . (2.31)

Then

C2 =
k
√

λ

4N
≡ κ . (2.32)

If we take κ → 0 we recover the string solution (2.3). Notice that the electric field Ftρ does

not vanish in this limit.

The other conserved charge carried by the brane is the angular momentum J

J = 2TD3

∫

dϑ dϕdρ
δL
δφ̇

= −4N

π

∫

dρ
sinh2 ρ sin2 χ sin2 θ (1 + sinh2 ρχ′2 + θ′2)

√

(cosh2 ρ − sin2 θ)(1 + sinh2 ρχ′2 + θ′2) − F 2
tρ

.
(2.33)
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Here the range of the ρ integral is [arccosh C1, ∞), which like in the case of the string,

covers only half the world-volume, with χ < π/2. A multiplicative factor of 2 was included

to account for the other branch with χ > π/2.

Plugging the explicit solutions in this expression it is easy to see that J → 0 when

C1 → 0. In this limit the brane does not rotate along the S2 and the solution reduces to

sin θ = 0 ,

sin χ sinh ρ = κ ,

Ftρ = −cosh ρ

cos χ
,

(2.34)

which is, after a conformal transformation, the same as the 1/2 BPS brane of [4].

The energy gets contributions from the DBI action and the Wess-Zumino term

EDBI = 2TD3

∫

dϑ dϕdρ
δLDBI

δṫ

=
4N

π

∫

dρ
sinh2 ρ sin2 χ cosh2 ρ (1 + sinh2 ρχ′2 + θ′2)

√

(cosh2 ρ − sin2 θ)(1 + sinh2 ρχ′2 + θ′2) − F 2
tρ ,

EWZ = 2TD3

∫

dϑ dϕdρ
δLWZ

δṫ
=

4N

π

∫

dρ sinh4 ρ sin2 χχ′ .

(2.35)

In addition one has to add a total derivative term, which serves as a Legendre trans-

form from the gauge field coordinate to the conjugate momentum Π, which is the correct

canonical variable in this problem [4]. This is

EL.T. =
2L2

2πα′

∫

dρΠFtρ = −4N

π
κ

∫

dρ
cosh2 ρ − sin2 θ

cosh ρ cos θ cos χ
. (2.36)

Plugging the BPS equations in the formulas (2.33), (2.35) and (2.36) above, one can

see that

EDBI + EWZ + EL.T. + J =
4N

π

∫

dρ
cosh2 ρ − sin2 θ

cosh ρ cos χ

[

sinh ρ sin χ − κ

cos θ

]

. (2.37)

Using the explicit solution it is easy to check that the term in square brackets vanishes, so

we get E = −J = |J |.

3. Wilson loop wrapping a circle on S5

3.1 Setup

In this section we shall look at a family of circular Wilson loops that couple to three of the

six scalars of the N = 4 multiplet. These operators were presented in [17] and studied in

detail in [19]. As for the loop in the previous section, the S5 part of the gravity calculation

will reduce to an S2 subspace. The difference will be that here the couplings to the scalars

are smeared around the loop and not localized at two points.

– 8 –
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While the Wilson loop follows a curve on the boundary of AdS5 parameterized by

x1 = R cos s , x2 = R sin s , (3.1)

the scalar to which it couples is given by the linear combination

Φ(s) = Φ3 cos θ0 + sin θ0(Φ1 cos s + Φ2 sin s) , (3.2)

with an arbitrary fixed parameter θ0. The loop may be written (in Euclidean signature) as

Wθ0 = TrP exp

[
∮

(iAµ(s)ẋµ + |ẋ|Φ(s)) ds

]

. (3.3)

In the special case of θ0 = 0 this is the usual half-BPS circle, while for θ0 = π/2 this is a

special case of the supersymmetric Wilson loops constructed by Zarembo [18].

It was shown in [19] that up to order (g2
Y MN)2 all interacting graphs in the Feynman

gauge cancel and the only contribution comes from ladder diagrams where the propagator is

a constant proportional to cos2 θ0. This naturally led to the conjecture that the expectation

value of this Wilson loop is given by the same matrix model as the half-BPS one [22, 23]

with the replacement of the coupling λ by λ′ = λ cos2 θ0. This gives the prediction

〈Wθ0〉 =
1

N
L1

N−1

(

− λ′

4N

)

exp

[

λ′

8N

]

, (3.4)

where L1
N−1 is a Laguerre polynomial. In [19] only the planar limit of this expression

〈Wθ0, planar〉 =
2√
λ′

I1

(√
λ′

)

, (3.5)

was considered (I1 is a modified Bessel function). String theory provided exact agreement

with the strong coupling expansion of this expression, as we shall review shortly. Further-

more, the same rescaling was observed in the computation of correlation functions between

this 1/4 BPS loop and chiral primary operators [24].

In the present calculation we want to capture a different limit, beyond the planar one.

We consider a multiply wrapped Wilson loop, or a loop in the k-th symmetric represen-

tation2, keeping the quantity κ′ ≡ k
√

λ′/4N fixed while taking both N and λ to infinity.

This is the limit that was discussed in [4, 6, 8, 9] for the half-BPS loop, and in this limit

the matrix model reduces to

〈Wκ′〉 = exp
[

2N
(

κ′
√

1 + κ′2 + arcsinh κ′
)]

. (3.6)

There is also a subleading contribution, that we did not include in the formula above,

obtained by replacing κ′ → −κ′. The appearance of this term can be explained by the

fact that perturbation theory should be invariant under λ′ → e2iπλ′. At strong coupling

the expectation value of the Wilson loop depends on
√

λ′, so that an extra term with

2It has been proven in [8] and [9] that in the matrix model the multiply wound loop W
(k) and the totally

symmetric operator WSk
coincide in the strong coupling regime.
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κ′ → −κ′ is needed. In the planar approximation this subleading term reduces to e−
√

λ′

,

which appears in the large λ′ expansion of the Bessel function in (3.5).

Later in this section we will be able to construct a D3-brane which is dual to the

multiply wrapped 1/4 BPS Wilson loop and we will recover (3.6) from supergravity. This

computation will also produce the subleading contribution discussed above, which will

correspond to an unstable D3-brane solution.

3.2 String solution

To write the relevant string solutions in the dual supergravity picture we use the following

metric on AdS5 × S2 (as in the previous example we drop the directions on S5 which do

not play a role here)

ds2

L2
= −dχ2 +cos2 χ(dρ2 +sinh2 ρ dψ2)+sin2 χ(dσ2 +sinh2 σ dϕ2)+dθ2 +sin2 θdφ2 . (3.7)

This metric has Lorentzian signature, which is somewhat more natural for the supersym-

metry analysis, but later we will also use the Euclidean version obtained by Wick rotating

χ → iu and σ → iϑ

ds2

L2
= du2 +cosh2 u(dρ2 +sinh2 ρ dψ2)+ sinh2 u(dϑ2 +sin2 ϑ dϕ2)+ dθ2 +sin2 θdφ2 . (3.8)

Note that in the Lorentzian case the χ coordinate foliates AdS5 by H2 × H2 surfaces (H2

is the two-dimensional hyperbolic space, or Euclidean AdS2), while in the Euclidean case

u foliates it into H2 × S2 surfaces.

The string describing the Wilson loop (3.3) will be at χ = 0 (or u = 0) and should end

at ρ → ∞ along a circle parameterized by ψ. As we go along this circle we should also move

along a circle on S2, the parallel at angle θ0 spanned by the angle φ. We take the ansatz

where along the entire world-sheet we equate ψ and φ. As mentioned, the asymptotic value

of θ should be θ0. In [19] two solutions with these boundary conditions were found

φ = ψ , sinh ρ(σ) =
1

sinhσ
, sin θ =

1

cosh(σ0 ± σ)
. (3.9)

Here σ is a world-sheet coordinate and σ0 is related to the boundary value of θ by

sin θ0 =
1

cosh σ0
. (3.10)

One can eliminate σ from the previous equations to find the relation

cosh ρ cos θ sin θ0 − sinh ρ sin θ cos θ0 = ± sin θ0. (3.11)

The two sign choices correspond to surfaces extending over the north and south pole of S2

respectively. The classical action for the two cases is equal to

S = ∓ cos θ0

√
λ = ∓

√
λ′ . (3.12)
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The dominant contribution has negative action and corresponds to the surface extended

over less than half a sphere. That solution is stable, while the one extending over the other

pole has positive action and three unstable modes.

These two solutions were interpreted in [19] as corresponding to the two saddle points

in the asymptotic expansion of the Bessel function (3.5)

〈Wθ0, planar〉 −→
λ′→∞

√
2√

πλ′3/4

[

e
√

λ′

(

1 + O(1/
√

λ′)
)

− ie−
√

λ′

(

1 + O(1/
√

λ′)
)]

. (3.13)

Furthermore, it was shown there that considering the limit of large λ, while keeping small

λ′ and integrating over the three modes that are massless for λ′ = 0, yields an identical

result to the full planar expression from the matrix model (3.5), including all α′ corrections.

The counting of the supersymmetries for the solutions (3.9) goes very similarly to the

counting presented in section 2 for the loop with insertions. The dependence of the Killing

spinors on the relevant components of the metric (3.7) is3

ε = e−
i

2
ρ Γ?Γ1e

1
2
ψ Γ12e−

i

2
θ Γ?Γ5e

1
2
φΓ56ε0 , (3.14)

while the constraints analogous to (2.7) and (2.10) are now

(Γ12 + Γ56)ε0 = 0 , (3.15)

and

Kε0 = −
(

cos θ0 Γ12 + sin θ0Γ16

)

ε0 . (3.16)

The two conditions (3.15) and (3.16) are compatible and therefore the two string solu-

tions (3.9) preserve one quarter of the supersymmetries, as does the operator Wθ0 in the

dual gauge theory.

3.3 D3-brane solution

We now move on to the construction of the 1/4 BPS D3-brane which describes the circular

Wilson loop in the k-th symmetric representation Wκ′ . The supersymmetry analysis will

be presented in Lorentzian signature (3.7) to avoid defining the Killing spinors in Euclidean

space. The resulting brane has extra factors of i in the projector equations and an over-

critical electric field. Moreover it does not seem to correspond to a Wilson loop operator

in the gauge theory, but to a higher-dimensional observable. Still we find this way of

performing the calculation useful. After presenting the solution we will switch to Euclidean

signature (3.8), where the solution will not suffer from those problems and will be perfectly

well defined.

We parameterize the brane world-volume by {ρ, ψ, σ, ϕ}. The 1/2 BPS brane has

constant χ = arcsin κ and θ = 0. A natural ansatz for the 1/4 BPS brane is then to take

χ = χ(ρ), θ = θ(ρ) and identify ψ with φ. This is consistent with the symmetries of the

loop. The asymptotic value of θ at ρ = ∞ should be θ0. To carry the k units of flux

represented by the Wilson loop operator, we switch on an electric field Fρψ(ρ).

3This is presented in greater detail in the next subsection (3.18) together with the vielbeins (3.17).
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Note that the dependence of θ and χ on ρ explicitly breaks the AdS2 isometry. This

fact makes it difficult to guess a simple ansatz for the solution to the equations of motion of

the brane. As in section 2 we will then proceed by looking at the first-order supersymmetry

equations which follow from requiring κ-symmetry on the brane world-volume.

We begin by constructing the Killing spinors associated to the AdS5 ×S2 metric (3.7)

with Lorentzian signature. The vielbeins relevant for the D3-brane solution are

e0 = Ldχ , e1 = L cos χdρ , e2 = L cos χ sinh ρ dψ ,

e3 = L sin χdσ , e4 = L sin χ sinh σ dϕ ,

e5 = Ldθ , e6 = L sin θ dφ .

(3.17)

Using the same notation of section 2, the Killing spinors may then be written as (adding

the dependence on ϑ and ϕ to (3.14))

ε = e−
i

2
χΓ∗Γ0e−

i

2
ρΓ∗Γ1e

1
2
ψΓ12e−

1
2
σΓ03e

1
2
ϕΓ34e−

i

2
θ Γ?Γ5e

1
2
φ Γ56ε0 . (3.18)

The DBI Lagrangian reads (with the sign in the square root appropriate for a brane

with Euclidean world-volume and with Fρψ containing a factor of 2πα′/L2)

LDBI = L4 sin2 χ sinhσ
√

(−χ′2 + θ′2 + cos2 χ)(cos2 χ sinh2 ρ + sin2 θ) + F 2
ρψ , (3.19)

and the projector associated with the D3-brane is

Γ = L−1
DBI

(

iΓ(4) − L2FρψΓ(2)K
)

I , (3.20)

where, again, K acts by complex conjugation, I by multiplication by −i and

Γ(4) = (γρ + χ′ γχ + θ′γθ)(γψ + γφ) Γ(2)

= L2(cos χΓ1 + χ′Γ0 + θ′Γ5)(cos χ sinh ρΓ2 + sin θΓ6) Γ(2)

Γ(2) = γσγϕ = L2 sin2 χ sinh σ Γ34 .

(3.21)

Note that the projector Γ does not depend on ψ. As for the string case we can eliminate

the dependence on ψ in the projection equation by imposing

(Γ12 + Γ56)ε0 = 0 , (3.22)

and then we impose also the condition

Kε0 = −(cos θ0Γ12 + sin θ0Γ16)ε0 , (3.23)

which both follow from the analysis of the supersymmetries of the string (3.16). The brane

solution will then preserve the same quarter of supersymmetries as the string and as the

gauge theory observable.

Because of the isometry of the system the factor of

M ≡ e−
1
2
σΓ03e

1
2
ϕΓ34 (3.24)
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commutes with those two constraints, so ε0 and Mε0 satisfy the same conditions.

Using some gamma-matrix algebra and applying the constraints above, we move the

matrix e−
i

2
χΓ?Γ0e−

i

2
ρ Γ?Γ1e−

i

2
θ Γ?Γ5 to the left of Γ in the projection equation. In this way

one gets a set of 8 first order differential equations for θ, χ and Fρψ (indicating which

gamma-matrix combination leads to them)

Γ0234 : 0 = iFρψ sinχ sin θ sin θ0 + χ′ sinh ρ(cos2 χ − sin2 θ) + cosh ρ sin χ cos χ sin2 θ

Γ?Γ5 : 0 = iFρψ sinχ sin θ cos θ0 − χ′ cosh ρ sin θ cos θ + sinh ρ sin χ cos χ sin θ cos θ

Γ1234 : 0 = iFρψ sinh ρ cos χ sin θ sin θ0 + iFρψ cosh ρ cos χ cos θ cos θ0−
−χ′ sinh2 ρ sin χ cos χ − θ′ sin θ cos θ + sinh ρ cosh ρ cos2 χ

Γ2345 : 0 = iFρψ sinh ρ cos χ sin θ cos θ0 − iFρψ cosh ρ cos χ cos θ sin θ0−
−θ′ sinh ρ cosh ρ cos2 χ − cos2 χ sin θ cos θ

Γ01 : 0 = iFρψ sinh ρ cos χ cos θ cos θ0 + iFρψ cosh ρ cos χ sin θ sin θ0−
−χ′ sinh ρ cosh ρ sin χ cos χ + cos2 χ(sinh2 ρ + sin2 θ)

Γ05 : 0 = iFρψ sinh ρ cos χ cos θ sin θ0 − iFρψ cosh ρ cos χ sin θ cos θ0

+θ′(sinh2 ρ cos2 χ + sin2 θ)

Γ15 : 0 = iFρψ sinχ cos θ sin θ0 − χ′ sinh ρ sin θ cos θ+

+θ′ sinh ρ sin χ cos χ + cosh ρ sin χ cos χ sin θ cos θ

1 : 1 = −iL4L−1
DBI sin2 χ sinhσ

(

iFρψ sinχ cos θ cos θ0 + χ′ cosh ρ sin2 θ

− sinh ρ sin χ cos χ sin2 θ
)

(3.25)

The half-BPS solution

χ′ = 0 , Fρψ = i cos χ sinh ρ (3.26)

can be recovered by setting θ = θ0 = 0 in (3.25).

The equations (3.25) are all consistent with each other. One can solve any three of

them, the remaining ones being automatically satisfied. The first three, for example, lead

to the equations

θ′ = A cos2 χ cos θ , χ′ = A sin χ cos χ sin θ , (3.27)

Fρψ = −i
cos χ cos θ

cos θ0
(A cosh ρ sin θ − sinh ρ) , (3.28)

where

A =
sinh ρ cos θ sin θ0 − cosh ρ sin θ cos θ0

(cos2 χ − sin2 θ) sinh ρ cos θ0 + cosh ρ sin θ cos θ sin θ0
. (3.29)

Taking the ratio of θ′ and χ′ yields

sin χ cos θ = C , (3.30)

where C is an integration constant. Inserting this solution into the expression for θ′ and

solving the resulting differential equation gives

cos χ (cosh ρ cos θ sin θ0 − sinh ρ sin θ cos θ0) = D . (3.31)

On the AdS5 side of the ansatz at ρ = 0 the circle parameterized by ψ shrinks to a

point. For the solution not to be singular at that point, the same has to happen also on the
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S5 side, since φ = ψ. The solution will be regular at ρ = 0 only if at that point sin θ = 0,

which then gives D in terms of θ0 and C as

D = ± sin θ0

√

1 − C2 , (3.32)

where the +, − signs correspond respectively to taking either θ = 0 or θ = π at ρ = 0, or,

in other words, to wrapping the brane around the northern or the southern hemisphere of

S2. Notice that in the string limit (χ → 0, or C → 0) the expression (3.31) reduces to the

string solution (3.11).

These solutions in Lorentzian space are unphysical. The world-volume of the brane is

Euclidean, but the electric field is over-critical, leading to an imaginary action. Further-

more, the branes do not end along curves on the boundary, but along higher-dimensional

surfaces, and do not provide a holographic description of Wilson loops.

Therefore we analytically continue those solutions to Euclidean signature, where the

resulting branes will provide a good holographic dual of Wilson loop operators. We take

the Wick rotation

χ = i u , σ = i ϑ . (3.33)

In these coordinates, the Euclidean AdS5 is written as an H2 ×S2 fibration as in eq. (3.8).

The solution (3.30) and (3.31) in Lorentzian signature now becomes

sinhu cos θ = c , (3.34)

and

cosh u (cosh ρ cos θ sin θ0 − sinh ρ sin θ cos θ0) = d . (3.35)

Similarly to the Lorentzian case the solution is smooth at ρ = 0 only for

d = ± sin θ0

√

1 + c2 . (3.36)

The implicit equation (3.35) is solved for ρ as a function of θ by

sinh ρ = sign(θ0 − θ)

sin θ sin θ0

(√
1 + c2 cos θ0 + cos θ

√

1 + c2 cos2 θ0
cos2 θ

)

cosh u(cos2 θ − cos2 θ0)

cosh ρ = sign(θ0 − θ)

√
1 + c2 cos θ sin2 θ0 + sin2 θ cos θ0

√

1 + c2 cos2 θ0
cos2 θ

cosh u(cos2 θ − cos2 θ0)
.

(3.37)

The sign function allows us to write in a single expression the two solutions corresponding

to a brane wrapping over the north or south poles of the S2. We will assume, without loss

of generality, that θ0 ≤ π/2.

Given that the solution may be written explicitly as a function of θ, it makes sense

to use it, instead of ρ, as one of the world-volume coordinate. Thus the world-volume is

parameterized by {θ, ψ, ϑ, ϕ} and ρ = ρ(θ) and u = u(θ) are given by the solutions above.

This parametrization will be singular in the 1/2 BPS limit, where θ = 0, but that solution

is very simple, with arbitrary ρ and constant u = arcsinh c.
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The DBI action in this signature reads

SDBI = 4N

∫

dθ sinh2 u
√

(cosh2 u ρ′2 + u′2 + 1)(cosh2 u sinh2 ρ + sin2 θ) + F 2
θψ , (3.38)

while the Wess-Zumino term can be written as

SWZ = 4N

∫

dθ ρ′ sinh ρ

(

u

2
− 1

2
sinh u cosh u − sinh3 u cosh u

)

. (3.39)

To obtain these expressions we have integrated over ψ and S2. Now the ′ stands for the

derivative with respect to θ. We have checked that the solutions found above satisfy the

equations of motion coming from (3.38) and (3.39).

In figure 1 we have plotted ρ and u as functions of θ for a D3-brane solution and

for comparison also ρ for the analog string solution (in which case u = 0). There are

two solution, both reaching infinite ρ at θ0 (for the example pictured we took the values

θ0 = π/3 and κ = 1). The stable solution then goes to ρ = 0 at θ = 0, while the unstable

solution goes to ρ = 0 at θ = π.

Note that in the case of the unstable D3-brane solution the coordinate u diverges at

the equator θ = π/2, as can also be seen from (3.34). This means that the D3-brane

reaches the boundary of AdS at that point, and gets reflected back into the interior (after

changing the sign of u). One could choose to truncate the surface there and consider either

half of the solution. But in the dual gauge theory that will not correspond to a Wilson

loop vacuum expectation value. Rather, the D3-brane extending from θ0 to θ = π/2 will

be the correlator between the Wilson loop and a two-dimensional surface operator located

where the brane reaches the boundary (the surface spanned by {ϑ, ϕ}, the radius of the ψ

circle shrinks to a point there). The other part of the solution, from θ = π/2 to θ = π is

the vacuum expectation value of the surface operator itself, with no Wilson loop insertion.

As usual the BPS equations simplify the square root in the DBI action, which in this

case reduces to

SDBI = 4N

∫

dθ

∣

∣

∣

∣

Fθψ
cos θ0

cos θ

∣

∣

∣

∣

sinh3 u . (3.40)

This fact can be used to check the conservation of Π, the momentum conjugate to the

gauge field Aψ

Π = −i
2πα′

L2
TD3

∫

dϑ dϕ
δLDBI

δFθψ
= ±4N√

λ

∣

∣

∣

∣

c

cos θ0

∣

∣

∣

∣

≡ ±k, (3.41)

where the two signs correspond to the two solutions. This implies that

|c| = κ| cos θ0|. (3.42)

To compute the full on-shell action we have to supplement the DBI and WZ bulk

contributions with total derivatives and boundary terms associated to the electric field Fθψ

and the scalar ρ(θ). These are given respectively by4

SL.T. = −i
L2

2πα′

∫

dθ dψ ΠFθψ , (3.43)

4For a general discussion on the role of boundary terms see [25] and [4].
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Figure 1: A depiction of string and D3-brane solutions. The solid line gives ρ as a function of θ

for the string with boundary value of θ = π/3. The D3-brane solution is represented by the dashed

and dotted lines which are respectively ρ and u as functions of θ (for κ = 1). In both cases there

are two solutions, a stable one with 0 ≤ θ ≤ θ0 (where ρ for the string and D3-brane are nearly

indistinguishable) and an unstable one, with θ ≤ θ0 ≤ π. The unstable D3-brane solution reaches

the boundary of AdS not only at θ0, but also at θ = π/2, where u diverges, but then it turns back

and closes smoothly on itself.

and

−Pρ

∣

∣

∣

θ→θ0

= −TD3

∫

dψ dϑ dϕ
δ(LDBI + LWZ)

δρ′

∣

∣

∣

∣

θ→θ0

. (3.44)

where Pρ is the momentum conjugate to ρ.

The boundary term for ρ can be motivated as follows. Let us consider the AdS5 metric

in the Poincaré patch

ds2 =
1

z2
(dz2 + dr2

1 + r2
1dϕ2

1 + dr2
2 + r2

2dϕ2
2) . (3.45)

The transformation relating z to our coordinates is

z =
1

cosh u cosh ρ − cos ϑ sinhu
, (3.46)

so that the ρ → ∞ region corresponds to z = 0. In the Poincaré patch the boundary

term associated to z has the form of a Legendre transform evaluated at the boundary of

AdS5 [25, 4]

−
∫

z pz

∣

∣

∣

z∼0
. (3.47)

Using (3.46) it is immediate to verify that in proximity of the boundary z pz ∼ pρ. This

justifies the form of the boundary term for ρ.

Now we can evaluate the on-shell action. The bulk and boundary contributions diverge

as we approach the boundary of AdS5, i.e. in the limit θ → θ0. We can regularize these

divergences by introducing a cut-off at θ0 − ε. This leads to the following expression for
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the regularized DBI action

SDBI = TD3

∫ θ0−ε

0
dθ

∫

dψ dϑ dϕLDBI = 4Nκ3 sin θ0

√
1 + c2

ε

+2Nκ3 sin θ0 tan θ0√
1 + c2

− Nκ sec2 θ0(2 + 8c2 − 4c2 cos2 θ0)
√

1 + c2 cos2 θ0

+2Nκ sec3 θ0

√

1 + c2
(

1 + 3c2 − 6c2 cos2 θ0 + 2c2 cos4 θ0

)

−2N sec4 θ0

(

1 − 4c2 sin2 θ0 − 8c4 sin2 θ0

)

log

(

c +
√

1 + c2

c cos θ0 +
√

1 + c2 cos2 θ0

)

+8Nκ3 sin θ0 tan θ0

√

1 + c2
(

2 log ε − 2 log(cos θ0 sin θ0) − log
(

1 + c2
)

+ log
(

cos2 θ0

(

1 + 2c2
)

+ 2cos θ0

√

1 + c2
√

1 + c2 cos2 θ0 + 1
))

. (3.48)

The Legendre transform of the gauge field is written as the integral over the total derivative

SL.T. = −i
L2

2πα′

∫ θ0−ε

0
dθ

∫

dψ ΠFθψ

= 4Nκ sin θ0

√
1 + c2

ε
− 2Nc

3 + κ2 + 2c2

√
1 + c2

, (3.49)

and the boundary term for ρ is

−Pρ

∣

∣

∣

θ0−ε
= −2N sin θ0(κ

√

1 + κ2 + arcsinhκ)

√
1 + c2

ε
√

1 + κ2

−4N sec θ0(κ
√

1 + κ2 + arcsinhκ)
2κ2 − (1 + 4κ2 − κ4) cos2 θ0 − 2c4

4(1 + κ2)3/2
√

1 + c2
.

(3.50)

Finally the regularized Wess-Zumino term turns out to be

SWZ = −2N
(

c
√

1 + c2 + arcsinh c
)

− SDBI − SL.T. + Pρ . (3.51)

Those expressions are much more complicated than the 1/2 BPS case, where those

three terms are

SDBI = 4N

∫

dρ sinh ρ cosh u sinh3 u ,

SWZ = 4N

∫

dρ sinh ρ

(

u

2
− 1

2
sinh u cosh u − sinh3 u cosh u

)

, (3.52)

SL.T. = 4N

∫

dρ sinh ρ cosh u .

The boundary term for ρ, just removes the divergence from the upper limit of ρ integration,

giving −1 from the lower limit. Summing up all the contributions and using sinh u = κ

gives the full on-shell action [4]

S = −2N
(

κ
√

1 + κ2 + arcsinh κ
)

. (3.53)
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While the regularized expressions for the 1/4 BPS loop are much more complicated,

the sum of the bulk and boundary terms is exactly the same with the replacement of κ by

c

Stotal = −2N
(

c
√

1 + c2 + arcsinh c
)

. (3.54)

Recall that c is related to the number of units of flux carried by the brane, or the rank of

the representation of the Wilson loop by (3.42)

c = κ′ =
k cos θ0

√
λ

4N
. (3.55)

Therefore this stable solution will contribute to the expectation value of the 1/4 BPS

Wilson loop at strong coupling

〈Wκ′〉 = exp
[

2N
(

κ′
√

1 + κ′2 + arcsinh κ′
)]

. (3.56)

This is the same result as can be derived from the matrix model observable (either the

multiply wrapped loop [4] or the symmetric one [8, 9]) in this limit. This serves as a

confirmation that the matrix model correctly captures the 1/4 BPS loop including all 1/N

corrections at large λ.

An analogous computation can be done for the unstable branch, where the range of

integration for the coordinate θ is [θ0 + ε, π] and Pρ is evaluated at θ0 + ε. The final result

is exactly as above, except for the overall sign

S
(unstable)
total = 2N

(

κ′
√

1 + κ′2 + arcsinh κ′
)

. (3.57)

As in the case of the string solution reviewed before, this should correspond to an ex-

ponentially small correction to the expectation value of the Wilson loop when doing the

asymptotic expansion at large N and large λ (see the discussion after eq. (3.6)).

In addition to the 1/2 BPS limit, with θ0 = 0, there is another interesting limiting

case, of θ0 = π/2 studied by Zarembo [18]. In that case the two D3-brane solutions, whose

actions always have the opposite signs, are degenerate. Both have vanishing action, and

in fact there are more than two solutions, rather a whole family parameterized by an S3.

But, unfortunately, looking at the solutions at this limit we find that they do not provide a

good description for the Wilson loop. If we consider finite κ, then from (3.42), the constant

c vanishes and by (3.34), also u = 0. Therefore the D3-brane shrinks to a two-dimensional

surface and therefore the higher-derivative corrections to the DBI action cannot be ignored.

If instead we keep c finite in that limit, then κ will diverge, leading to a smooth D3-

brane solution. But now as θ goes to θ0 both ρ and u diverge, meaning that the brane ends

along a 3-dimensional surface on the boundary, rather than the Wilson loop.

4. Discussion

We have presented some solutions for D3-branes in AdS5 × S5, which are dual to certain

1/4 BPS Wilson loop operators in N = 4 supersymmetric Yang-Mills theory. The first

example was a combined system of a loop with two local insertions made from complex
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scalar fields. Without the insertions the loop itself would have been 1/2 BPS and the trace

of the local insertions is also 1/2 BPS, while the combined system preserves 1/4 of the

supersymmetries. The second system was a family of Wilson loops with couplings to three

of the scalars in a way that also preserves eight supercharges.

It is by now a standard feature of the AdS/CFT correspondence that very long op-

erators in the gauge theory map to “giant” D-brane objects rather than to fundamental

strings or supergravity modes. In our case the D3-branes should describe the Wilson loops

in a high-dimensional symmetric representation, where the rank of the representation k is

of order N . In the example of the loop with insertions we were able to calculate the energy

and angular momentum and they agreed with each other, as would be expected, but there

was no special feature arising from the fact that the loop is in a certain representation.

In the second example we were able to compare the result of the AdS calculation to

a matrix model conjectured to describe those 1/4 BPS loops [22, 23, 19]. The value of

those loops at large N and large λ in a symmetric representation is known (and coincides

with the single-trace multiply-wrapped loop). We found that the classical action for the

D3-brane correctly reproduces the expected result, which includes an infinite series of 1/N

corrections to the planar string expression. Furthermore, we have found two solutions with

the same boundary conditions, in exact analogy with the strings describing the loop in the

fundamental representation. The second solution, which contributes an exponentially small

correction to the Wilson loop in the supergravity limit is the brane analog of a world-sheet

instanton. Such contributions are expected, since the string expansion is asymptotic in

1/
√

λ.

The geometry of this second D3-brane solution is very interesting. Starting from

the boundary of AdS, where it originates along the Wilson loop, it moves into the bulk,

turns back, goes again to the boundary, gets reflected back into the interior, and closes

off smoothly on itself. If we chose not to continue the solution, it would end on a two-

dimensional surface on the boundary. So this part of the solution would describe the

correlator of a Wilson loop and a surface operator which are non-trivially linked. It would

be very interesting to understand further the nature of this surface operator. The connec-

tion between Wilson loops and surface operators may not be so surprising given that they

may both be described by branes in the bulk (see e.g. [26, 7, 27]).

As discussed at the end of the last section, one would like also to consider a special

limit of these loops, when θ0 = π/2. This limit is particularly interesting because of a

comment made at the end of [19], where it was noticed that one may take λ large while

keeping λ′ = λ cos θ0 small, in a way similar to the BMN limit [28]. When considering

the string solution in that limit, the mass of the string modes becomes much larger than

the mass of the three broken zero modes (those parameterizing the S3 mentioned above).

Ignoring all the stringy modes and integrating only over those three leads to the full result

of the planar matrix model, including all α′ (or 1/
√

λ′) corrections. It would be extremely

interesting if we were able to repeat the calculation here and find the exact expression

including all 1/N and 1/
√

λ′ corrections. Recall that those corrections would not be the

same for the loop in the symmetric representation and for the multiply-wound loop. So

this calculation would be a very good check of the recent identification of the D3-brane

– 19 –
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with the loop in the symmetric representation [10]. Unfortunately, as explained before,

in this limit the D3-brane degenerates and does not provide a good description of those

Wilson loops.

The loops studied in this paper are not the most general 1/4 BPS Wilson loops, all our

examples had a circular geometry, which is not required. Many other loops were described

in [18], and there are probably even more. The string solutions describing those loops were

studied by Dymarsky et al. [29], and perhaps there is a general classification of the relevant

branes along the lines of [30].

After studying the probe brane in the AdS5 × S5 background it is natural to consider

the back-reaction of the brane on the geometry. This was pursued in the 1/2 BPS case

in [31] and [32], where all the relevant metrics could be related to Young-tableaux, thus

giving a correspondence between the representations of the Wilson loop and the associated

metrics. It would be interesting to try to find the metrics in this case too, though this

system has far less symmetry making it a much harder problem.

Finally, one can go further to a system which is only 1/8 BPS, by looking at the

correlators of those Wilson loops with chiral primary local operators. Amazingly, in the

gauge theory those also seem to be captured fully by ladder diagrams and may be reduced

to some matrix model [24]. In the case of the 1/2 BPS loop this was checked in AdS using

a string [33, 34] and D-branes [35]. For the 1/4 BPS loop this was done with a string in [24]

and would be interesting to repeat this calculation with D3-branes.
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